FINAL
Examination Paper

(COVER PAGE)

Session : January 2015

Programme : Diploma In Information And Communication Technology (DICTN)

Course : MAT1103 : Fundamentals Of Mathematics

Date of Examination : March 17, 2015

Time : 2:00pm – 4:00pm Reading Time:

Duration : 2 Hours

Special Instructions :

Answer any FOUR (4) structured-type questions.

Materials permitted : Non-Programmable Calculator

Materials provided : Nil

Examiner (s) : Ms. S.M. Elizabethrani, Fang Yen Yen.

Moderator : Dr. Ng Set Foong

This paper consists of 7 printed pages, including the cover page.
Answer any **FOUR (4)** questions in the answer booklet provided. All questions carry equal marks.

Question 1

(a) Simplify \(\left(125x^{-6}y^{13}\right)^{\frac{1}{3}} \) and express your final answer only in **POSITIVE** exponents.

(2 marks)

(b) Find the following products in simplest form:

(i) \((36)^{\frac{3}{2}} \times (625)^{\frac{1}{2}} \).

(2 marks)

(ii) \((2x - 6)(5x + 11) \).

(2 marks)

(c) Simplify \(2\sqrt{20} + \sqrt{45} - \sqrt{80} \).

(2 marks)

(d) Solve the following equations for \(x \):

(i) \(\left| \frac{2 + x}{5} \right| + 1 = 7 \).

(5 marks)

(ii) \(2x(2x - 9) = 0 \).

(4 marks)

(e) Rationalize the denominator: \(\frac{2}{\sqrt{2} - 3} \).

(3 marks)

(f) The sum of two numbers is 7 and the sum of their squares is 29. Find the two numbers.

(5 marks)
Question 2

(a) Solve \(2^{x-1} = 11 \) for \(x \) and give the answer correct to 3 decimal places.

(b) Solve \(\log_7(2x) - \log_7(5-x) + \log_7(x-2) = 0 \) for \(x \).

(c) Find the value of \(a \) :

(i) \(8(2^{a-1}) = 64^a \)

(ii) \(\log_a 512 = 3 \)

(d) Solve the following system of equations:

\[
\begin{align*}
x - y + z &= 8 \\
2x + 3y - z &= -2 \\
3x - 2y - 9z &= 9
\end{align*}
\]

(e) Solve the following simultaneous equation:

\[
\begin{align*}
x + y &= 2 \\
2x^2 - 5x - y &= 4
\end{align*}
\]

Question 3

(a) Find the slope and the \(y \)-intercept of the line determined by the equation \(\frac{4x}{-3} = \frac{3y + 5}{-2} \).

(b) Write an equation of the line passing through \((3, -2)\) and perpendicular to \(3x + 4y = 5\).

(c) Given that \(f(x) = 2 + \frac{1}{x} \) and \(g(x) = x^2 - 1 \), find

(i) \(f^2(l) \)

(ii) \(g^{-1}(l) \)

(iii) \(gf(-l) \)
(d) Sketch the graph of the function given below:

\[f(x) = x^2 - 6x - 7 \]

show its vertex (maximum or minimum), x and y-intercepts clearly on the graph. (6 marks)

(e) The sum of three consecutive odd numbers is 99. Find the numbers. (4 marks)

Question 4

(a) Solve the following inequalities:

(i) \[-5x - 2 > -3(x + 2) + 17\]. (3 marks)

(ii) \[2x^2 + 9x > 5\]. (4 marks)

(iii) \[-2 \leq \frac{3(x + 7)}{5} \leq 6\]. (3 marks)

(iv) \[2|5x - 4| \leq 8\]. (3 marks)

(b) Sketch the graphical solution of the following system of inequalities:

\[
\begin{align*}
x + 2y & \leq 4 \\
y - 2x & > -6 \\
y & \geq -1
\end{align*}
\]

(5 marks)

(c) Find the distance between the points \((-2, 4)\) and \((-3, 2)\). (3 marks)

(d) Graph \(3x - y = 6\) for \(x \leq 1\). Hence, find the range of the function. (4 marks)
Question 5

(a) Solve the following equations. Give your answers up to 3 decimal places where necessary.

 (i) \(9e^{5x} = 1269\) \hspace{1cm} (2 marks)

 (ii) \(2 + 4 \ln x = 16\) \hspace{1cm} (2 marks)

(b) Find the sum of all the terms in the arithmetic progression:

 \(-9, -2, 5, 12, \ldots, 75.\) \hspace{1cm} (6 marks)

(c) Find the sum of the first 10 terms of the geometric progression:

 \(7, -14, 28, -56, \ldots\) \hspace{1cm} (4 marks)

(d) The sum of the first 7 terms of an arithmetic progression is 84, find the common difference if the 7th term is 45. \hspace{1cm} (4 marks)

(e) Find the 16th term of a geometric progression whose first term is \(-2\) and whose fourth term is \(-54.\) \hspace{1cm} (4 marks)

(f) The sum of a number and 9 is multiplied by \(-2\), and the answer is \(-8.\) Find the number. \hspace{1cm} (3 marks)
Question 6

(a) Simplify $5\sqrt{24} - 3\sqrt{96} + 9\sqrt{6}$.

(b) The length of a rectangle is 8 cm more than its width. Find the dimension of the rectangle if its area is 84 cm2.

(c) If the price a computer is RM1500 after 40% discount, find the original price of the computer.

(d) Simplify the following

(i) $2(10xy - 4x^2y^2 - 3y^3) + (-9x^2y^2 + 4y^3 - 7xy)$
(ii) $\left(\frac{2x^3y^{-6}}{-4y^{-2}}\right)^2$

(e) Given A(-2, 3) and B(7, -5), find

(i) the distance of AB,
(ii) equation of the line AB in standard form.

(f) Expand $(2x + 1)^2$ using Binomial theorem.

(g) Find the fourth term of the expansion of $(2x - 3)^6$.

-THE END-
Formulae:

Quadratic Formula

\[ax^2 + bx + c = 0 \quad a \neq 0 \]

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

Arithmetic Progression

\[T_n = a + (n-1)d, \]

\[S_n = \frac{n}{2} [2a + (n-1)d] ; \quad S_n = \frac{n}{2} [a+l] \]

Geometric Progression

\[T_n = ar^{n-1}, \]

\[S_n = \frac{a(r^n - 1)}{r - 1}, \quad r \neq 1 ; \quad S_n = \frac{a(1-r^n)}{1-r}, \quad r \neq 1 \]

Binomial Theorem

\((k+1)th\ term\ for\ (a+b)^n:\)

\[^nC_k a^{n-k} b^k \]